negative Ricci curvature

negative Ricci curvature
Математика: отрицательная кривизна Риччи

Универсальный англо-русский словарь. . 2011.

Игры ⚽ Поможем написать курсовую

Смотреть что такое "negative Ricci curvature" в других словарях:

  • Ricci curvature — In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci Curbastro, provides one way of measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean n… …   Wikipedia

  • Ricci flow — In differential geometry, the Ricci flow is an intrinsic geometric flow a process which deforms the metric of a Riemannian manifold in this case in a manner formally analogous to the diffusion of heat, thereby smoothing out irregularities in the… …   Wikipedia

  • Curvature — In mathematics, curvature refers to any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this …   Wikipedia

  • Ricci decomposition — In semi Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a pseudo Riemannian manifold into pieces with useful individual algebraic properties. This decomposition is of fundamental importance in… …   Wikipedia

  • Scalar curvature — In Riemannian geometry, the scalar curvature (or Ricci scalar) is the simplest curvature invariant of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the intrinsic geometry of the… …   Wikipedia

  • Sectional curvature — In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature K(σp) depends on a two dimensional plane σp in the tangent space at p. It is the Gaussian curvature of… …   Wikipedia

  • Prescribed scalar curvature problem — In Riemannian geometry, a branch of mathematics, the prescribed scalar curvature problem is as follows: given a closed, smooth manifold M and a smooth, real valued function f on M , construct a Riemannian metric on M whose scalar curvature equals …   Wikipedia

  • Principal curvature — Saddle surface with normal planes in directions of principal curvatures In differential geometry, the two principal curvatures at a given point of a surface are the eigenvalues of the shape operator at the point. They measure how the surface… …   Wikipedia

  • Riemannian geometry — Elliptic geometry is also sometimes called Riemannian geometry. Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric , i.e. with an inner product on the tangent… …   Wikipedia

  • Quaternion-Kähler manifold — In differential geometry, a quaternion Kähler manifold (or quaternionic Kähler manifold) is a Riemannian manifold whose Riemannian holonomy group is a subgroup of Sp( n )·Sp(1). Another, more explicit, definition, uses a 3 dimensional subbundle H …   Wikipedia

  • Classification of manifolds — In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain. Contents 1 Main themes 1.1 Overview 1.2 Different categories and additional… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»